FlexGiGa U160: SpiFlash 调试笔记

 本笔记介绍如何用 U160 总线适配器调试 QSPI 接口的 IS25LP080D Flash 芯片.进而熟悉对 U160 的 QSPI 的功能使用 详细的操作帮助,请直接参考软件中每个对应功能窗口的帮忙框的内容

从下面的操作中可以看到,本系统使用非常方便,实时显示的时序波形,极大的方便了调 试工作.

- 2. 首先,根据 IS25LP080D 的 Spec,确定 IO 的工作电压和 SPI 的工作频率,并配置 U160
 A) 确定电压 和 SPI 工作频率 和 时序
 - Low Power with Wide Temp. Ranges
 - Single Voltage Supply IS25LP: <u>2.30V to 3.60V</u>
 - High Performance Serial Flash (SPI)
 - 50MHz Normal and 133Mhz Fast Read
 - 532 MHz equivalent QPI
 - DTR (Dual Transfer Rate) up to 66MHz
 - Selectable Dummy Cycles
 - Configurable Drive Strength
 - Supports SPI Modes 0 and 3
 - More than 100,000 Erase/Program Cycles
 - More than 20-year Data Retention

如上图 Spec,我们可以把电压和 IO 电压选为 3.0V (2.3~3.6V 都可) SPI 工作频率选为 10MHz

B) 设置 U160 的 IO 电压, SPI 工作频率 和 时序 把 U160 通过 USB 线连接到电脑,并启动"FlexGiGa Bus Adapter"软件,软件会自动连接 上 U160,如果没有连接成功,请点击"打开设备"进行连接 如下图,成功连接后,框内图标会变成绿色

FlexGiGa(www.flex	giga.com) Bus Ada	apter : I2C , SPI , Q	SPI , DSPI , Any-Frequ	uency Generator(任意频率发生器)	
 ♥, ♥, 打开设备 关闭设备 	💿 😤 🍓 12C SPI	◎ / / / / / / / / / / / / / / / / / / /	▼ 配置 Language	· 窗口 過2 · · · · · · · · · · · · · · · · · ·	

点击"配置"按钮,弹出"配置"窗口,如下图,按框内的内容进行配置,点击"确认"按钮

公共:
总线电压 3.000 🚔 V
12C:
SCL 频率: 400K - Hz Pus Voltage
SCL/SDA 上拉电阻: 1.91K • A Resistor
SPI,QSPI,DSPI :
Clock 频率: 【10M · Hz】 IO 驱动能力: Normal ·
时序:
CPHA: 0 - CPOL: 0 -
CS#
$MISO \longrightarrow MSB \chi _{6} \chi _{5} \chi _{4} \chi _{3} \chi _{2} \chi _{1} \chi _{LSB} \longrightarrow$
🚱 默认值 🧭 确定 🛛 🛛 取消!

软件自动把 U160 配成设定的配置,如下图所示,

🔁 SPI	: C:\tm	p\FlexGiGa_Demo\SPI Fla	sh_IS25LP080D.SPI_4					
SPI (書	通SPI)	DSPI (2 I0) QSPI (4 I0)						
新建	打开	示例 保存 另存 另存到	则Excel 运行(F5) 运行选中	- 中的(F6) 单步(F7)	暂停(F9) 停止(F10) 命	令间延迟(ms) 10 🚔 配置	2 2	
编号	使能	Single写数据	Multi写数据	Multi读字节数	Multi读到的数据(Hex)	Multi读到的数据(String)	说明	状态 🔺
► 1			F5		0x00	2	Exit QSPI	成功
2	2	0x35			0x00	3	Enter QSPI	成功
3			AB 00 00 00	0d01	0x13	10 A		成功
4			OxAF	0c03	0x9D 0x60 0x14	. 1		成功
5								
6								· ·
光	魏形 📗	〕数据 📃 连接 🧐 帮助	bi -					
			singleWriteBytes		multiWriteBy	/tes multiRead	Bytes	
CS	# -	V		11111111	Marrie Contraction of the Contra			
CI	K	สสสสสส	FF FF	าคคคค	กกกกกก.			
10	0					V V V V V V V V		
10	· -			111111111		X 5 X 1 X 5 X 1 X 5 X 1 X 5	X X = X =	
10	2 -				<u>6X2X6X2X6X</u>	X 6 X 2 X 6 X 2 X 6 X 2 X 6	X X 6X 2	
10	3 -		 		-(7)3(7)3(7)	X7X3X7X3X7X3X7	$X \times 7X_3$	<u>, , , , , , , , , , , , , , , , , , , </u>
					0xF5			
						1.000]
适配器	: Open	ed 总线电压: 3V 时	钟频率: 10MHz CPHA:	0 CPOL: 0	IO驱动能力: Normal			al

点击"关闭设备"按钮,并拔掉 U160 上的 USB 线,断开和电脑的连接

注:在连接外部芯片前,先对 U160 配置的原因是,U160 会自动记忆上一次的配置,上电后 会自动把 IO 电压配置成上一次设定的电压,如果这个电压超过外部芯片的工作电压,可能会 损坏外部芯片,所以尽量先对 U160 进行配置.

- 3. 连接 IS25LP080D 到 U160 后,再把 U160 连接到电脑,运行"FlexGiGa Bus Adapter"软件,对 SpiFlash 进行读/写
 - A) 根据 IS25LP080D 的 Spec 中的引脚图,把芯片的 Pin 信号分别接到 U160 相应的 Pin 上(注: 如果芯片由外部供电,就不要接 VIO 到 VCC)

B) 用 USB 连接 U160 到电脑,并运行"FlexGiGa Bus Adapter"软件,点击"SPI"按钮,打 开"SPI 窗口",并点击 "QSPI(4 IO)" 进入 QSPI 功能

C) SpiFlash 命令:进入 和 退出 QSPI

如图下图 Spec:

The Enter Quad Peripheral Interface (QPIEN) instruction, 35h, enables the Flash device for QPI bus operation. Upon completion of the instruction, all instructions thereafter will be 4-bit multiplexed input/output until a power cycle or an Exit Quad Peripheral Interface instruction is sent to device.

The Exit Quad Peripheral Interface (QPIDI) instruction, F5h, resets the device to 1-bit SPI protocol operation. To execute an Exit Quad Peripheral Interface operation, the host drives CE# low, sends the QPIDI instruction, then drives CE# high. The device just accepts QPI (2 clocks) command cycles.

Figure 8.34 Enter Quad Peripheral Interface (QPI) Mode Sequence

Figure 8.35 Exit Quad Peripheral Interface (QPI) Mode Sequence

D) SpiFlash 命令: Read Product Identification 如图下图 Spec:

Figure 8.51 RDID (Read Product Identification) Sequence In QPI Mode

E) Read JEDEC ID In QPI Mode 如图下图 Spec:

Figure 8.53 RDJDIDQ (Read JEDEC ID In QPI Mode) Sequence

脚本命令运行如下

	SPI)	DSPI (2 I0) QSPI (4 I0)						
」新建	打开	示例 保存 另存 另存到	Mexcel 运行(F5) 运行设	:= ·- 些中的(F6) 单步(F7)	暂停(F9) 停止(F10) 命令	令间延迟(ms) 10 🚔 🐔) 월	
묵	使能	Single写数据	Multi写数据	Multi读字节数	Multi读到的数据(Hex)	Multi读到的数据(String)	说明	状态
1	1		F5		0x00	•	Exit QSPI	成功
2	1	0x35	2		0x00		Enter QSPI	成功
3	V		AB 00 00 00	0d01	0x13			成功
4	1		0×AF	0c03	0x9D 0x60 0x14			成功
5	1							
6	1							
			11111 11111					<u></u>
00 01 02 03		- - - - - -		+ + + + + ×5×4×3×2×1	11111 040404X -01016X -02020X -03737X	ו••••••••••••••••••••••••••••••••••••	X X X X X X X X X X X X X X X X X X X	

网站: <u>www.flexgiga.com</u>

e-mail: <u>flexgiga@sina.com</u>

淘宝: <u>https://shop538817056.taobao.com/?spm=2013.1.1000126.d21.1e2cdc00LZW8fg</u>

学 。 干设备	关闭设	fit (12	C SPI	電 频率发生器		nguage	□ · ◎ 會□ · 淘宝					
SPI E2PR S 12C	OM : C:\tm	p\FlexG	iiGa_De	mo\120	_Samples.120	:							3
12C	2 打开	武 示例	保存	副 另存 另	(8) 日存到Excel	▶ : 运行(F5) 运行选	二 中的(F6) 解	·) 停止(F10)	命令间延迟(ms) 10		い置
编号	使能	从地址	(7bit)	读/写 T	5 寄存器地址 0x01	写数据 0x12 0x34 0x56	读字节数	读到的数据 (He	ax) 读到的	y据(String)	说明	状态	
2		0x51		R	0x02		0x02	0x34 0x56					
• 4	V	0x51		¥	0x01	0xA1	0102	0200 0200					1
%	形 Slave) 数据 e Add	目達 ress(7	接 Ø bits)	帮助!	Write Byt	e	④ 任意规 任意时钟。	率发生器(2.5k) 发生器 帮助	łz~100MHz)	:		×
S	1 0 0x51	1 (0 0	0 1				A 时钟 0 月	: [章:	■ 是否输出 1.000000	÷ (#	Hz)	
	Mas	ter-> e->M	Slave laster	S: P:	START STOP	R: Read(SDA W: Write(SDA	HIGH)	1	带步长: :出驱动能力:	1 🚔	MHz •]	

技术支持及售后 微信

